Rainbow Colouring of Split Graphs

نویسندگان

  • L. Sunil Chandran
  • Deepak Rajendraprasad
  • Marek Tesar
چکیده

A rainbow path in an edge coloured graph is a path in which no two edges are coloured the same. A rainbow colouring of a connected graph G is a colouring of the edges of G such that every pair of vertices in G is connected by at least one rainbow path. The minimum number of colours required to rainbow colour G is called its rainbow connection number. Between them, Chakraborty et al. [J. Comb. Optim., 2011] and Ananth et al. [FSTTCS, 2012] have shown that for every integer k, k ≥ 2, it is NP-complete to decide whether a given graph can be rainbow coloured using k colours. A split graph is a graph whose vertex set can be partitioned into a clique and an independent set. Chandran and Rajendraprasad have shown that the problem of deciding whether a given split graph G can be rainbow coloured using 3 colours is NP-complete and further have described a linear time algorithm to rainbow colour any split graph using at most one colour more than the optimum [COCOON, 2012]. In this article, we settle the computational complexity of the problem on split graphs and thereby discover an interesting dichotomy. Specifically, we show that the problem of deciding whether a given split graph can be rainbow coloured using k colours is NP-complete for k ∈ {2, 3}, but can be solved in polynomial time for all other values of k.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rainbow Colouring of Split and Threshold Graphs

A rainbow colouring of a connected graph is a colouring of the edges of the graph, such that every pair of vertices is connected by at least one path in which no two edges are coloured the same. Such a colouring using minimum possible number of colours is called an optimal rainbow colouring, and the minimum number of colours required is called the rainbow connection number of the graph. A Chord...

متن کامل

Inapproximability of Rainbow Colouring

A rainbow colouring of a connected graph G is a colouring of the edges of G such that every pair of vertices in G is connected by at least one path in which no two edges are coloured the same. The minimum number of colours required to rainbow colour G is called its rainbow connection number. Chakraborty, Fischer, Matsliah and Yuster have shown that it is NP-hard to compute the rainbow connectio...

متن کامل

Anti-Ramsey numbers in complete split graphs

A subgraph of an edge-coloured graph is rainbow if all of its edges have different colours. For graphs G and H the anti-Ramsey number ar(G,H) is the maximum number of colours in an edge-colouring of G with no rainbow copy of H. The notion was introduced by Erdős, Simonovits and V. Sós and studied in case G = Kn. Afterwards exact values or bounds for anti-Ramsey numbers ar(Kn, H) were establishe...

متن کامل

On the Edge-colouring of Split Graphs on the Edge-colouring of Split Graphs

We consider the following question: can split graphs with odd maximum degree be edge-coloured with maximum degree colours? We show that any odd maximum degree split graph can be transformed into a special split graph. For this special split graph, we were able to solve the question, in case the graph has a quasi-universal vertex.

متن کامل

Rainbow k-connection in Dense Graphs

An edge-coloured path is rainbow if the colours of its edges are distinct. For a positive integer k, an edge-colouring of a graph G is rainbow k-connected if any two vertices of G are connected by k internally vertex-disjoint rainbow paths. The rainbow k-connection number rck(G) is defined to be the minimum integer t such that there exists an edge-colouring of G with t colours which is rainbow ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 216  شماره 

صفحات  -

تاریخ انتشار 2017